E5 Mistral 7B Instruct
The E5 Mistral 7B Instruct model is optimized for English text embedding tasks, with capabilities for multilingual processing, flexible customization, and handling long input sequences, making it suitable for complex natural language processing applications.
Model details
Category | Details |
---|---|
Model Name | E5 Mistral 7B Instruct |
Version | Original |
Model Category | Embedding |
Size | 7B parameters |
HuggingFace Model | e5-mistral-7b-instruct |
OpenAI Compatible Endpoint | Embeddings |
License | MIT |
Capabilities
Feature | Details |
---|---|
Azion Long-term Support (LTS) | ❌ |
Context Length | 32k tokens |
Supports LoRA | ✅ |
Input Data | Text |
Usage
Embedding
This is an example of how to use this model to generate embeddings for text input:
const modelResponse = await Azion.AI.run("intfloat-e5-mistral-7b-instruct", { "input": "The food was delicious and the waiter...", "encoding_format": "float"})
Property | Type | Description |
---|---|---|
input | string | The text input for which embeddings are generated. |
encoding_format | string | The format of the embedding output. |
Response example:
{ "id": "embd-84a83438abff420e9c785c1659ae8ad6", "object": "list", "created": 1746821207, "model": "intfloat-e5-mistral-7b-instruct", "data": [ { "index": 0, "object": "embedding", "embedding": [0.01, ..., 0.005] } ], "usage": { "prompt_tokens": 11, "total_tokens": 11, "completion_tokens": 0, "prompt_tokens_details": null }}
Property | Type | Description |
---|---|---|
id | string | Unique identifier for the embedding request. |
object | string | The type of the returned object. |
created | number | Unix timestamp indicating when the request was created. |
model | string | The name of the model used for generating embeddings. |
data | array | An array of embedding result objects. |
data[].index | number | The index of the embedded item in the input. |
data[].object | string | The type of object in the data array. |
data[].embedding | array | The array of floating-point numbers representing the embedding vector. |
usage.prompt_tokens | number | Number of tokens in the input prompt. |
usage.total_tokens | number | Total tokens used in the request. |
usage.completion_tokens | number | Tokens used in the model’s output. |
usage.prompt_tokens_details | string | Additional token detail data. |
JSON schema
{ "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "required": [ "input" ], "properties": { "encoding_format": { "type": "string", "enum": [ "float", "base64" ] }, "dimensions": { "type": "integer" }, "input": { "oneOf": [ { "type": "string" }, { "type": "array", "items": { "oneOf": [ { "type": "string" }, { "type": "integer" }, { "type": "array", "items": { "type": "integer" } } ] } } ] } }}